Largest product in a series
The four adjacent digits in the \( 1000 \)-digit number that have the greatest product are \( 9×9×8×9=5832 \).
\[ 73167176531330624919225119674426574742355349194934\\ 96983520312774506326239578318016984801869478851843\\ 85861560789112949495459501737958331952853208805511\\ 12540698747158523863050715693290963295227443043557\\ 66896648950445244523161731856403098711121722383113\\ 62229893423380308135336276614282806444486645238749\\ 30358907296290491560440772390713810515859307960866\\ 70172427121883998797908792274921901699720888093776\\ 65727333001053367881220235421809751254540594752243\\ 52584907711670556013604839586446706324415722155397\\ 53697817977846174064955149290862569321978468622482\\ 83972241375657056057490261407972968652414535100474\\ 82166370484403199890008895243450658541227588666881\\ 16427171479924442928230863465674813919123162824586\\ 17866458359124566529476545682848912883142607690042\\ 24219022671055626321111109370544217506941658960408\\ 07198403850962455444362981230987879927244284909188\\ 84580156166097919133875499200524063689912560717606\\ 05886116467109405077541002256983155200055935729725\\ 71636269561882670428252483600823257530420752963450 \]
Find the thirteen adjacent digits in the \( 1000 \)-digit number that have the greatest product. What is the value of this product?